
Course 5: Message Passing

Kristaps Dzonsons

12 December, 2011

Course site: http://kristaps.bsd.lv/minicourse 12 2011

Kristaps Dzonsons Fundamentals of High-Performance Computing

Environment

In prior lectures, we focussed on the environment of
high-performance computing:

UNIX
an operating system popular in non-desktop
environments

C
a low-level, minimal programming language

development
pthreads, fork/join, vector-parallel compiler
extensions

hardware
multi-core, multi-processor, NUMA

In this lecture, we consider clustering and message passing.

Kristaps Dzonsons Fundamentals of High-Performance Computing

Review: Threading

Threading is orchestrated by a kernel and compiler. It is an
implementation of “shared memory”, where executables have the
illusion of operating over a single, contiguous block of memory.

Kristaps Dzonsons Fundamentals of High-Performance Computing

Review: Threading

Kristaps Dzonsons Fundamentals of High-Performance Computing

Review: Threading

This extends a programmer’s natural expectations of process
memory to multiple processing units.

What are the problems with this model of computation? Consider:
hardware (multiple non-contiguous memory images) and algorithm
complexity (locality-aware synchronisation).

Kristaps Dzonsons Fundamentals of High-Performance Computing

Introduction: Single Machine

Kristaps Dzonsons Fundamentals of High-Performance Computing

Introduction: Connected Machines

Kristaps Dzonsons Fundamentals of High-Performance Computing

Introduction: Connected Machines

Kristaps Dzonsons Fundamentals of High-Performance Computing

Introduction: Cluster

A cluster is a disjoint set of memory images. In practise:
connected computers.

Extending our awareness of memory to a cluster, we must consider:

interconnect
the hardware device connecting computers

topology
the way in which computers are connected

Kristaps Dzonsons Fundamentals of High-Performance Computing

Introduction: Case Study

Consider the following hardware found on KTH’s Lindgren
supercomputer (Cray XE6).

1516 compute nodes (processors)

36348 compute cores (24-core processors)

64 KB L1 cache (per-core)

512 KB L2 cache (per-core)

24 MB L3 cache (per-processor)

32 GB RAM (per-processor)

Kristaps Dzonsons Fundamentals of High-Performance Computing

Introduction: Case Study

Kristaps Dzonsons Fundamentals of High-Performance Computing

Introduction: Case Study

Kristaps Dzonsons Fundamentals of High-Performance Computing

Introduction: Case Study

Kristaps Dzonsons Fundamentals of High-Performance Computing

Introduction: Case Study

Kristaps Dzonsons Fundamentals of High-Performance Computing

Problem: Scalability

Our simple, single-machine shared memory system had a simple
method of cache coherence: keeping cache memory and “backing
store memory” in sync.

. . . or was it so simple?

Kristaps Dzonsons Fundamentals of High-Performance Computing

Problem: Scalability

Kristaps Dzonsons Fundamentals of High-Performance Computing

Problem: Scalability

Kristaps Dzonsons Fundamentals of High-Performance Computing

Problem: Scalability

Even in the simple case, we had to rely on a “total view” of cache
transfers to maintain coherence.

How do we pull that off on a cluster, or even NUMA? Do we want
to at all?

Kristaps Dzonsons Fundamentals of High-Performance Computing

Problem: Scalability

Kristaps Dzonsons Fundamentals of High-Performance Computing

Solution: Message Passing

One solution is to bypass the mess and stop pretending that virtual
memory encompasses the entire machine. Instead, pass memory
messages between cooperating machines.

How do we do this so that it scales upward (multi-machine,
multi-cluster, . . .) and downward (multi-core) without being
incredibly complex?

Kristaps Dzonsons Fundamentals of High-Performance Computing

Solution: MPI

The Message Passing Interface (MPI) is a standardised
message-passing protocol for high-performance computing.

gamelab uses Open MPI (it doesn’t matter: utilities and libraries
are standardised). Open MPI also used on RoadRunner (1/500,
2009), K-Computer (1/500, 2011).

Kristaps Dzonsons Fundamentals of High-Performance Computing

Case Study: Source

#inc l u d e <mpi . h>
#inc l u d e <s t d i o . h>
#inc l u d e <s t d l i b . h>

s t a t i c f l o a t
f (i n t s t a r t , i n t end , const f l o a t ∗v1 , const f l o a t ∗v2)
{

i n t i ;
f l o a t r e s ;

f o r (r e s = 0 . 0 , i = s t a r t ; i < end ; i++)
r e s += v1 [i] ∗ v2 [i] ;

r e t u r n (r e s) ;
}

Kristaps Dzonsons Fundamentals of High-Performance Computing

Case Study: Source

i n t
main (i n t argc , char ∗a rgv [])
{

f l o a t ∗v1 , ∗v2 , r r e s , r e s ;
i n t i , s z = 50000000 , rank , s i z e , s t a r t , end ;

MP I I n i t (&argc , &argv) ;
MPI Comm rank (MPI COMM WORLD, &rank) ;
MPI Comm size (MPI COMM WORLD, &s i z e) ;

v1 = c a l l o c (sz , s i z e o f (f l o a t)) ;
v2 = c a l l o c (sz , s i z e o f (f l o a t)) ;

f o r (i = 0 ; i < s z ; i++)
v1 [i] = v2 [i] = (f l o a t) i ;

s t a r t = (rank ∗ s z) / s i z e ;
end = (rank == s i z e − 1) ? sz : s t a r t + (sz / s i z e) ;
r e s = f (s t a r t , end , v1 , v2) ;

MPI Reduce(& re s , &r r e s , 1 , MPI FLOAT , MPI SUM, 0 , MPI COMM WORLD) ;

i f (0 == rank)
p r i n t f (”%g\n” , r r e s) ;

MP I F i n a l i z e () ;
r e t u r n (EXIT SUCCESS) ;

}

Kristaps Dzonsons Fundamentals of High-Performance Computing

Case Study: Running

% ftp http://kristaps.bsd.lv/minicourse_12_2011/example8.c

% cc -I/usr/local/include -L/usr/local/lib \

> -g -W -Wall -o example8 example8.c -lmpi -lpthread

% mpirun example8

4.88498e+22

% mpirun -np 2 example8

4.12441e+22

Kristaps Dzonsons Fundamentals of High-Performance Computing

