
Course 7: Programming Practises

Kristaps Dzonsons

12 December, 2011

Course site: http://kristaps.bsd.lv/minicourse 12 2011

Kristaps Dzonsons Fundamentals of High-Performance Computing



Problem: How do I write programmes?

In this mini-course, I cover some helpful topics in programming
practises.

1 editing code

2 accessing resources

3 compiling, managing dependencies

4 debugging

5 versioning

6 documenting

Kristaps Dzonsons Fundamentals of High-Performance Computing



Editing Code

Where and how does one “write code” efficiently on UNIX
systems? By using an editor. My choice: vim, a popular
descendant of 2BSD’s vi.

% vimtutor

% vim example.c

Kristaps Dzonsons Fundamentals of High-Performance Computing



Accessing Resources

UNIX is well-known for its built-in manual pages (“manpages”).
These are accessed by man, and searched with whatis and
apropos.

% apropos mpi

% whatis pthreads

% man pthread_create

Always read a function’s manpage before you use that function!

Kristaps Dzonsons Fundamentals of High-Performance Computing



Compiling, Managing Dependencies

Many times we’ve invoked cc to comple our code. What if we
have multiple files, or complex arguments for cc? The make utility
can manage compilation for us.

% cat Makefile

CFLAGS += -I/usr/local/include

LDFLAGS += -L/usr/local/lib

LIBS = -lmpi -lpthread

example8: example8.o

$(CC) $(CFLAGS) $(LDFLAGS) -o example8 example8.o $(LIBS)

% make

% make

% touch example8.c

% make

Kristaps Dzonsons Fundamentals of High-Performance Computing



Debugging

Your executable will crash. What do you do?

1 make sure coredumps are enabled

2 make sure you compile with debugging symbosl

3 run the debugger over faulting executables

% ulimit -c unlimited

% cc -g -W -Wall willfail.c

% ./a.out

Abort trap (core dumped)

% gdb a.out a.out.core

(gdb) backtrace

#0 0x0000000201c6130a in kill () from /usr/lib/libc.so.60.1

#1 0x0000000201cc3121 in abort () at ...libc/stdlib/abort.c:68

#2 0x0000000000400969 in main () at foo.c:1

Kristaps Dzonsons Fundamentals of High-Performance Computing



Versioning: Single-User

Versioning is extremely powerful: it lets us keep track of the
development of our utilities. UNIX has many built-in versioning
tools. For a single-developer system, rcs may be used.

% mkdir RCS

% vim code.c

% ci -l code.c

Kristaps Dzonsons Fundamentals of High-Performance Computing



Versioning: Multi-User

For a multi-developer system, cvs (Concurrent Versioning System)
suits most needs. It extends rcs to a client-server model.

% cvs up

% vim code.c

% cvs commit

Kristaps Dzonsons Fundamentals of High-Performance Computing



Documenting

Documentation is so critical it almost goes without saying
(unfortunately, it often does go without saying – with unfortunate
results). If you write an executable utility, you can write your own
manpage for it in the mdoc language. Then, other users of your
system will know what it does and how to run it.

It’s sometimes customary to create a README file in your
package directory for compilation of your utility (which doesn’t
really belong in the manpage).

On gamelab, those with accounts can also publish sources. See
me privately for how to orchestrate this.

Kristaps Dzonsons Fundamentals of High-Performance Computing


