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Part I: i0: web application security
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1. Client passes HTTP request to web server.

2. Web server receives HTTP request from client.

3. . . . maps request to CGI.

4. . . . spawns CGI script.

5. . . . passes HTTP request to CGI script.

6. CGI script processes.

7. . . . passes HTTP response to server.

8. Web server passes HTTP response to client.



6. CGI script processes.

. . . is really. . .

6. 6.1 CGI script parses header request information.
6.2 . . . reads request into memory/file.
6.3 . . . parses key-value pairs from request stream.
6.4 . . . processes key-value pairs.



1. Client passes HTTP request to web server.

2. Web server receives HTTP request from client.

3. . . . maps request to CGI.

4. . . . spawns CGI script.

5. . . . drop privileges and chroot(2) child.

6. . . . re-write components of HTTP request into CGI.

7. . . . passes HTTP request to CGI script.

8. CGI script processes.

9. . . . passes HTTP response to server.

10. Web server post-processes HTTP response.

11. Web server passes HTTP response to client.
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Problem i0: adversarial network data directly in contact with
system resources.

I Database and application-specific resources.

I System resources (sockets, processes, . . . )

I File-system within chroot(2).

I Memory of application (!).

I . . .

I All your base.
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Specifically, problem i0 is connection of application logic with the
code that parses HTTP form data (and HTTP environment) from
the CGI request.

Solution i0 + 1?
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By splitting apart the parser, we can protect web application logic
(the process) from requests exploiting the parser.

We can do better. . .
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1. CGI script spawns child processes before anything else.

2. . . . hands off standard input to child.

3. . . . sets up socket pair with child.

4. Untrusted child parses header request information.

5. . . . reads request into memory/file.

6. . . . parses key-value pairs from request stream.

7. . . . passes key-value pairs back to CGI script.

8. CGI script processes key-value pairs.



The untrusted child can still access system resources.

We can do better. . .
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Sandboxing is a way of constraining the environment available to a
process.

Most well-known sandbox? chroot(2).

More thorough sandboxes: systrace(4) (OpenBSD), Capsicum
(FreeBSD), “sandbox” (Darwin), ed(1), . . .



By sandboxing the parse sequence, we limit the damage caused by
untrusted network data. As for what the application logic does
with that data. . . You’re on your own.

Now on to i0 + 2 and i1. . .



Part II: i0 + 2: kcgi
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kcgi, kristaps.bsd.lv/kcgi, is a C library that is1. . .

1. designed to fail

2. slow

3. resource-intensive

1It also has manpage documentation, a regression framework, AFL testing
framework, automatic HTTP compression, and considerable MIME parsing.



kcgi, kristaps.bsd.lv/kcgi, is a C library that is. . .

1. designed to fail

1.1 parse and validate everything in child process
1.2 sandbox following OpenSSH’s example

2. slow

2.1 at least twice as slow as raw parsing

3. resource-intensive

3.1 one extra process per CGI client
3.2 two extra file descriptors
3.3 reads full request into memory twice
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kcgi suffers greatly from the penalty of fork(2), systrace(4),
and socketpair(2) I/O. It also suffers from double-allocation of
data (original for parse, parsed pairs in parent).

Problem i1? Performance and resource usage.

The allocation problem can be improved by smart programming.
But the former?



Solution i1 + 1: FastCGI. This fixes the amount of forking.

This is a work in progressˆwˆwˆwˆwfuture work.
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While this is being finished. . . kcgi is available at
kristaps.bsd.lv/kcgi.

Questions?

Thank you!


