
What is wrong?

How can we fix it?

 3i

Why does the fix suck?

 3i + 1

 3i + 2

kcgi : sandboxed CGI framework
Or: quantifying the price of web application security

AsiaBSDCon 2015, Tokyo

Kristaps Dzonsons
kristaps@bsd.lv, kristaps@kcons.eu

BSD.lv Project, k-Consulting

May 28, 2015

Part I: i0: web application security

web server

CGI server

HTTP

CGI client

web application

CGIHTTP

1. Client passes HTTP request to web server.

2. Web server receives HTTP request from client.

3. . . . maps request to CGI.

4. . . . spawns CGI script.

5. . . . passes HTTP request to CGI script.

6. CGI script processes.

7. . . . passes HTTP response to server.

8. Web server passes HTTP response to client.

6. CGI script processes.

. . . is really. . .

6. 6.1 CGI script parses header request information.
6.2 . . . reads request into memory/file.
6.3 . . . parses key-value pairs from request stream.
6.4 . . . processes key-value pairs.

1. Client passes HTTP request to web server.

2. Web server receives HTTP request from client.

3. . . . maps request to CGI.

4. . . . spawns CGI script.

5. . . . drop privileges and chroot(2) child.

6. . . . re-write components of HTTP request into CGI.

7. . . . passes HTTP request to CGI script.

8. CGI script processes.

9. . . . passes HTTP response to server.

10. Web server post-processes HTTP response.

11. Web server passes HTTP response to client.

chroot(2)

CGI client

CGI server

network data

databasefilesystemsocketsprocesses

Problem i0: adversarial network data directly in contact with
system resources.

I Database and application-specific resources.

I System resources (sockets, processes, . . .)

I File-system within chroot(2).

I Memory of application (!).

I . . .

I All your base.

chroot(2)

CGI client

CGI server

network data

database filesystem sockets processes

Specifically, problem i0 is connection of application logic with the
code that parses HTTP form data (and HTTP environment) from
the CGI request.

Solution i0 + 1?

CGI client

application logic

CGI server

HTTP

HTTP parser

key-value pairs

CGI

By splitting apart the parser, we can protect web application logic
(the process) from requests exploiting the parser.

We can do better. . .

CGI client

application logic

CGI server

HTTP

HTTP parser

input validator

validated pairs

CGI

1. CGI script spawns child processes before anything else.

2. . . . hands off standard input to child.

3. . . . sets up socket pair with child.

4. Untrusted child parses header request information.

5. . . . reads request into memory/file.

6. . . . parses key-value pairs from request stream.

7. . . . passes key-value pairs back to CGI script.

8. CGI script processes key-value pairs.

The untrusted child can still access system resources.

We can do better. . .

CGI client

sandboxed child

application logic

CGI server

HTTP

HTTP parser

input validator

validated pairs

CGI

Sandboxing is a way of constraining the environment available to a
process.

Most well-known sandbox? chroot(2).

More thorough sandboxes: systrace(4) (OpenBSD), Capsicum
(FreeBSD), “sandbox” (Darwin), ed(1), . . .

By sandboxing the parse sequence, we limit the damage caused by
untrusted network data. As for what the application logic does
with that data. . . You’re on your own.

Now on to i0 + 2 and i1. . .

Part II: i0 + 2: kcgi

CGI client

CGI server

web application

 1. fork(2)

 kcgi child

 4. CGI

 7. HTTP

 kcgi

 2. khttp_parse(2) 6. pairs

 3. fork(2) 5. pairs

kcgi, kristaps.bsd.lv/kcgi, is a C library that is1. . .

1. designed to fail

2. slow

3. resource-intensive

1It also has manpage documentation, a regression framework, AFL testing
framework, automatic HTTP compression, and considerable MIME parsing.

kcgi, kristaps.bsd.lv/kcgi, is a C library that is. . .

1. designed to fail

1.1 parse and validate everything in child process
1.2 sandbox following OpenSSH’s example

2. slow

2.1 at least twice as slow as raw parsing

3. resource-intensive

3.1 one extra process per CGI client
3.2 two extra file descriptors
3.3 reads full request into memory twice

0

0.25

0.5

0.75

1

0 0.5 1 1.5 2 2.5 3 3.5

milliseconds

Figure : OpenBSD 5.5, nginx, slowcgi(8)

0

0.5

1

1.5

2

2.5

3

˜com
press

˜sandbox

kcgi
slowcgi(8)

static

m
s

Figure : OpenBSD 5.5, nginx, slowcgi(8)

0

0.25

0.5

0.75

1

0 10 20 30 40 50 60

milliseconds

Figure : Mac OS X “Lion”, Apache

0

5

10

15

20

25

˜com
press

˜sandbox

kcgi
slowcgi(8)

static

m
s

Figure : Mac OS X “Lion”, Apache

kcgi suffers greatly from the penalty of fork(2), systrace(4),
and socketpair(2) I/O. It also suffers from double-allocation of
data (original for parse, parsed pairs in parent).

Problem i1? Performance and resource usage.

The allocation problem can be improved by smart programming.
But the former?

Solution i1 + 1: FastCGI. This fixes the amount of forking.

This is a work in progressˆwˆwˆwˆwfuture work.

web server

CGI server

control

FastCGI

CGI client

web application

HTTP parser

HTTP

parser

HTTP

pairs pairs

While this is being finished. . . kcgi is available at
kristaps.bsd.lv/kcgi.

Questions?

Thank you!

