
Role-based Access Control and BCHS

Kristaps Dzonsons
The BSD.lv Project

Abstract
Web applications present an attractive attack surface in
part since they are public front-ends to valuable data
sources. Not only are these applications network-facing,
they must also accept a non-trivial set of inputs, perform
complex tasks, and produce diverse outputs—each of
which may be manipulated by a skilled attacker. While
a great deal of active research concerns itself with re-
stricting system resources from attackers, there are few
resources for protecting an application’s internal data
sources. In this paper, I describe how recent develop-
ments in BCHS web applications allow programmers to
define, enforce, and audit access roles of the application
and its data source. These developments bring hard guar-
antees on data security from the application scope to the
operational scope.

1 Introduction

Consider a web application foo that provides a market-
place for buying and selling widgets. Registered clients
log in to foo, post widgets for sale, browse markets, and
acquire new widgets. Unregistered users can browse as
well, albeit with less information on the widgets and
principles. Administrators also play an important role in
curating the marketplace and performing routine mainte-
nance.

In the interests of simplicity, let’s assume payments,
warehouse management, and other such tasks are han-
dled elsewhere.

To render its services, foo interacts with a database
defining its registered clients and public users, ses-
sions, administrators, inventory, and other market
information—spot prices, fees, etc.

The foo development team clearly has a formidable
task: not only must the ”business logic” of the mar-
ketplace be well-defined and properly written, but there
must be clear separation within the marketplace of user

classes to prevent collusion and other adversarial be-
haviour that affects the market economy.

They must also guarantee that the command param-
eters that govern this business logic, such as identities
and operations, must be properly derived from the di-
verse and inter-connected set of input modalities: CGI,
HTTP, JSON, etc. Any of these may be adversarially al-
tered, separately or in concert, to craft a false operational
environment.

System

CGI script

Application

data source

input parsing

processingoutput

adversary

HTTP, JSON, etc.

Figure 1: Layer separation and attack surface.

In Figure 1, we see the OSI model’s application and
presentation layer as input parsing, then processing and
output, respectively. A clear line of attack flows from the
adversary indirectly to the data source, and also directly
from compromised input sources.

Given the promulgation of similar marketplaces, it’s



reasonable to acquire one of the many COTS solutions,
configure to the services rendered, deploy, and hope for
the best.

However, consider the service that foo renders: an on-
line gold exchange.

The inventory managed by the database is that of ware-
housed metals, and the buying and selling process deal
with high-cost exchanges between principles whose pri-
vacy is also a premium asset.

We often described security as rendered in the context
of generic applications exchanging widgets, but many of
the applications we depend upon on a daily basis broker
similarly high-value exchanges: personal and business
banking, stocks and commodities, bill-paying, sensitive
communications, and so on.

When considering foo as a gold market instead of a
widget market, or substituting ”widget” for any high-
value artefact, we can appreciate the development team’s
necessary focus on security. With a single troy ounce
of gold being over 1 000 USD, it’s easy to see that foo
will have its attack surface carefully examined by skilled
adversaries.

Fortunately, application security is a well-researched
field—on all levels of the OSI stack.

physical

system locks

process OpenBSD

logical sandbox

magic^Wskill

adversary

Figure 2: Counter-measures for adversarial behaviour.

When considering a security process for the needs
of a gold market, we must carefully construct from the
ground up with counter-measures on each level of gran-
ularity. Physical security (the ”media layer”, in OSI par-
lance) is beyond the scope of this paper, as is general
operating system security (layers 4–6). Securing an ap-
plication from its operating environment is well-studied,
especially in recent years with sandboxing technologies,

privilege separation, ASLR, and so on.[5][4]
In this paper, I introduce a method and implementa-

tion for provisioning logical (internal) access to a web
application’s data source with role-based access controls,
or ”RBAC”. This method will extend our security mea-
sures from the process scope—with all of its robust mea-
sures of ASLR, sandboxing, etc.—to that of its ”business
logic”.

What is role-based access control? A role in a RBAC
system is an ontological object representing the opera-
tor of an application. For example, a web application
process typically begins in an unspecified role. The user
is then authenticated in some fashion—say, a database
query on a session object or login credentials—with a
role derived from the authentication. This might be that
of an administrator, or a registered user with buyer capa-
bilities, or an anonymous browser.

Roles are well-suited to web applications since they
often classify users as-is. Sometimes this is implicit in
the database structure, sometimes explicit in an enumer-
ation of user types. This allows users to join and leave
the system without needing to account for individual ac-
cess rights—we negotiate access in terms of the user’s
class, not their identity.

Moreover, additional features, such as adding an ad-
ministrative role for warehouse management, require
only adding to the enumerations of possible roles. Or
in the implicit case, adding additional tables describing
the role and linking them to an abstract user table.

Access

Root

Object

Sub role

Object

Sub role

Object

Sub-sub role

Object

Figure 3: Hierarchical roles and objects.

Once roles have been defined, access must also be
defined. In this paper, we discuss access in terms of

2



database operations—SQL statements—and the propa-
gation of exported data. To wit, we’ll pursue role assign-
ment to database queries, database modifications, and ex-
port of data fields.

By unambiguously mapping our application’s user
roles into database statement, we’ll exploit existing priv-
ilege separation strategies to control database access by
access role.

Our implementation is not the first of its class, but
presents a simple and novel way of establishing guaran-
tees on the operation of given roles using conventional
methods.

2 History

The concept of formal access control has a long his-
tory. The initial public standards were derived in the late
1980s from prior work in the late 60s and 70s, most of
which being related to the access of classified materials
for government and military use.[9] The access method-
ologies of this age were limited to discretionary and
mandatory access controls,[7] culminating in the ”Or-
ange book” (TCSEC, 1983, updated in 1985).

Discretionary controls match our understanding of the
popular doas and sudo applications, which grant access
to objects (including operations) at the discretion of an
out-of-band process. UNIX permissions are themselves
DAC systems, since permissions are set (at the discretion
of) the user.

owner check role
Reject

Accept

Figure 4: Check at discretion of object’s owner.

The concept of mandatory controls allows an object
(commonly as found in the file-system, but generalis-
able to any object) to itself define the level of access. Of
the BSD systems, mandatory controls are only available
on FreeBSD by way of the POSIX.1e extensions via the
TrustedBSD Project.[14][13]

policy check role
Reject

Accept

Figure 5: Check against mandatory policy.

Discretionary access control is well-suited to ”drive-
by” security requirements, such as was initially imple-
mented between security-concerned organisations and
temporarily-attached bodies such as contractors and con-
sultants. It also fits well into collaborative environments,

such as on multi-user academic systems, where sharing
of documents is at the discretion of the object owner.

In the government and military systems described in
the literature, DAC systems were often augmented with
MAC to enable multi-level classification protection. This
made certain resources have distribution fixed by manda-
tory policy, while others were at the discretion of the
owners.

Similar environments may be created in today’s
FreeBSD by making use of its POSIX.1e extensions
for mandatory access control alongside the conventional
user permissions.

The foundational models stimulated a signif-
icant number of additional security models and
implementations.[2] Their mention here is in their
importance in laying the foundation for access method-
ologies more germane to the needs of the foo web
application.

It’s clear that neither of the given methodologies suc-
cinctly meet the needs of the foo web application. It is
neither appropriate for the principles of the system (ad-
ministrators, registered clients) to govern discretionary
access to data, nor for a mandatory policy regarding in-
dividual principles.

In 1992, Dr Kuhn formalised the concept of role-based
access control, which expands the concept of mandatory
controls to accommodate for roles of principles, instead
of the principles themselves. This is a useful generali-
sation for individuals who usually are already organisa-
tionally classified within departments or sub-institutions.
Moreover, RBAC can gracefully degrade into MAC by
having each user within its own role.[6][12]

As in the prior MAC formulation, RBAC is also non-
discretionary.

Moreover, by explicitly accommodating for a concept
of available and active roles, RBAC allows for all man-
ner of inheritance topologies. For example, it’s simple
to enact a framework of hierarchical roles, where lesser
roles (e.g., an administrator for users being a lesser role
than an administrator) drop the privileges of the parent.
It’s similarly possible to enact the opposite, where lesser
roles gain certain privileges, such as the same administra-
tor for users being able to access certain database tables
not accessible from the general administrator class.

RBAC was rigorously defined as an ANSI/INCITS
standard (NIST RBAC) in 2000[11] and further in 2004,
and has since then seen wide-spread adoption in many
environments. In the coming section, we investigate
whether RBAC is available in systems we may use for
deploying the foo web application.

3



3 Related Work

In considering related work, we restrict our survey to
modern, well-known open source systems that may be
applied to the foo web application as described. This lim-
its us to databases, frameworks, programming languages,
and programming language libraries (third-party compo-
nents, depending on the parlance of the language).

A limited concept of roles is specified in SQL:1999[8],
with varying levels of implementation across popular
systems. Both PostgreSQL1 and MariaDB2 implement a
form of role-based access control. SQLite does not have
this native functionality3.

We refer to PostgreSQL version 10.1, MariaDB ver-
sion 10.2, and SQLite version 3.22.0 in this paper.

MariaDB has a simpler implementation, as it does not
allow for role privilege inheritance. However, it’s in
theory possible for a third-party application to manually
construct hierarchical MariaDB roles from a third-party
specification.

More significantly, MariaDB does not support reen-
trant role setting: roles are mapped directly to user
classes; and while a user’s role may not be changed, the
current role itself may not be granted a further-restricted
set of available roles. We consider this a serious limita-
tion; as in practise, a system generally begins with broad
permissions, then narrows them as it completes its task.
(Or the opposite.)

However, the MariaDB implementation does allow for
restricting roles to a set of stored procedures, which in
theory can be used to describe all possible fine-grained
operations available to a role, the PostgreSQL implemen-
tation only restricts to classes of SQL statement. Both
allow for granularity on the level of table columns.

While we consider the concept of hierarchical roles to
be significant, any system with hierarchical access rights
may have equivalent semantics. In such a situation, a
role instead is granted with significant privileges, then
drops privileges as its role narrows (having started with
the inability to grant further privileges). However, this
lacks the simplicity of guaranteeing unequivocally that a
process in a given role has known privileges.

In the field of non-RDBMS systems, MongoDB4 has
support for RBAC on par with PostgreSQL and Mari-
aDB. The support for RBAC in other so-called ”NoSQL”
systems, which lack standards-based syntax, are diverse

1https://postgresql.org
2https://mariadb.org
3”Since SQLite reads and writes an ordinary disk file, the only ac-

cess permissions that can be applied are the normal file access permis-
sions of the underlying operating system. The GRANT and REVOKE
commands commonly found on client/server RDBMSes are not imple-
mented because they would be meaningless for an embedded database
engine.” (https://www.sqlite.org/omitted.html)

4https://www.mongodb.com/

and beyond the scope of this paper. Like MariaDB, how-
ever, MongoDB roles are assigned to a given user and
transition between roles is not well-defined. Privileges
may, however, be inherited and dropped during run-time.

The current version of MongoDB referenced in this
paper is 3.6.

It’s clear that RBAC has an extensive history of imple-
mentation in standards-based SQL databases, with con-
siderable implementations prior to that as well[3]. How-
ever, one of our motivations is to make the concept of
roles extend into our application logic, allowing us to
control both for the access of data as well as establish
limitations on its export. Thus, we turn to RBAC imple-
mentations available directly to the ”business logic” of
our web application.

The usage of RBAC for fine-grained con-
trol within running applications also has known
implementations[1]. In surveying availability, we limit
ourselves to modern open source systems. In surveying
these fields, it’s clear that the following is true:

However, and despite the few methods that at-
tempt to automatically derive these policy im-
plementations from high-level security speci-
fications, the task of implementing an access
control security policy remains in the vast ma-
jority of cases a manual process which is time-
consuming and error-prone.[10]

The PHP language has external support for roles 5, as
does Python6, Golang7, and Perl8. All of these are pop-
ular languages for web application development, and the
security of the database is often cited as one of the driv-
ing reasons for RBAC implementations.

Many other popular languages have similar levels of
support, and there are many other implementations for
the above languages—far too many to mention in this
paper.

Regarding the usage of roles and observing the pro-
liferation of role concepts in SQL:1999 implementa-
tions, it’s also conceivable that a system could be writ-
ten that extracts role information from a role-enabled
database (such as PostgreSQL) and feeds that into the
PHP, Python, or Perl run-time role system. This would
provide a complete solution.

A significant issue with RBAC implementations in
these languages, and indeed in any language or system
where the RBAC is enabled within the process itself, is
that a sufficiently-motivated adversary might be able to
disable these features from within the application as well
by manipulating the process space. In other words, there

5http://phprbac.net
6https://yosaiproject.github.io/yosai
7https://github.com/mikespook/gorbac
8http://perldancer.org

4

https://postgresql.org
https://mariadb.org
https://www.sqlite.org/omitted.html
https://www.mongodb.com/
http://phprbac.net
https://yosaiproject.github.io/yosai
https://github.com/mikespook/gorbac
http://perldancer.org


is no guarantee of the system’s operation beyond those
of the language designers.

We consider this a significant concern due to our desire
to make guarantees on the availability of data to given
roles. The database methods, as described, avoid this
failing by having the database managers run in a pro-
cess apart from the web application. (SQLite, which is
designed for in-process use, is an exception but has no
native RBAC support to speak of.)

While it’s certainly possible to implement a com-
partmentalised security process for any of the above
languages, none exist to date. There is clearly some
room for improvement: being able to guarantee that a
sufficiently-talented adversary cannot compromise our
process and affect our roles, and having the simplicity
of reentrant roles with reduced privilege semantics.

4 Method

I now describe a method and implementation of assign-
ing, enforcing, and auditing role-based access control. I
use as my exemplar utility our gold exchange web appli-
cation, foo, to emphasise the demands on security.

User demand on the system is not significant (band-
width, concurrent users, storage requirements, etc.), but
as we wish to use conventional hardware (VMs), system
resource usage should be conservative. In other words,
the application will be in the demand class of most small
to medium-sized web applications, on the order of thou-
sands to tens of thousands of total users having negligible
concurrency demands.

The specification starts with the stipulation that we
must work with a stock BSD system with minimal added
configuration. We choose OpenBSD due to familiarity—
FreeBSD has similar security features for our needs.
(NetBSD, however, does not.) This paper does not cover
the merits of various operating systems on the system
level of security, nor does it expand upon the many secu-
rity measures enacted around processes.

While we acknowledge the prior existence of RBAC
utilities in the PHP, Perl, and Python languages, we use
C as our basis languages. The choice of C will become
more apparent when we consider the implementation de-
tails of establishing guarantees; but in a more general
sense, the simplicity of RBAC allows us not to depend
on prior implementations. With the assumption that any
programming language is equally secure in the hands of a
skilled developer, we allow our constraints of few depen-
dencies and deployment simplicity to guide our choice.

Further, though PostgreSQL is an attractive choice
due to its native RBAC functions, we use SQLite as a
database engine. The reason for this follows our choice
of C; however, we also acknowledge that future data re-
quirements may stipulate a change to PostgreSQL, and

thus make our choice of database to be agnostic in that it
will be hidden behind an access layer.

Our choice in SQLite bears further mention since Post-
greSQL has some clear advantages in prior support of
RBAC. While using RBAC on a table access level is at-
tractive, this feature is also available from SQLite (as
subsequently discussed). Moreover, the general use of
PostgreSQL roles is on a modification level (whether
insert, update, and so on), while our access controls
operate on a per-statement basis. MariaDB has support
for storing statements that may be access-controlled by
roles, but also lacks reentrant roles.

In short, the choice of PostgreSQL and MariaDB both
require external scaffolding to augment roles: it stands
to reason that if we’re to have a scaffolding, the initial
database should be as simple as possible.

As mentioned earlier, SQLite does support access au-
thorisation with the sqlite3 set authorizer func-
tion. Our implementation does not currently use this
feature, as access is limited to SQL statements and not
specific data, but anticipates doing so as described in the
Future Work section.

The last component required for foo is the ability to
audit roles. This is critically necessary to being able to
maintain an access policy across releases and develop-
ment teams. In the event of external audits, a meaningful
illustration is important to begin considering the avail-
ability of data.

None of the available mechanisms, neither as a pro-
gramming language library nor within the database, have
this possibility. This further reduces the unique advan-
tages of the existing implementations, since auditing is a
non-trivial human-interface (or automated) task.

The responsibilities left to the foo development team,
with these methods well-known, are to implement the so-
lution.

5 Implementation

We begin by using kwebapp9 to implement our data
layer. kwebapp generates the API and implementation
of a data model specification, input and output, allowing
us to focus on the ”business logic” of our market trans-
actions. It also allows us to specify roles entirely within
a configuration file—and audit the access of those roles.

In using this system, our development team need only
to define the data model, roles, then create routing logic
mapping command parameters to defined functions.

The backend of kwebapp is pre-defined as ksql10,
which is currently a shim for SQLite. Our primary se-
curity measures will take place during the interaction be-

9https://kristaps.bsd.lv/kwebapp
10https://kristaps.bsd.lv/ksql

5

https://kristaps.bsd.lv/kwebapp
https://kristaps.bsd.lv/ksql


tween kwebapp and ksql. It’s worth noting that, while
ksql is concerned primarily with SQLite, it’s not by de-
sign limited to any database. We leave interacting with a
PostgreSQL or MariaDB database as an inevitable exer-
cise for future expansion.

The security of foo will be enforced largely by use of
OpenBSD’s pledge11 and privilege separation[5].

After parsing command parameters using kcgi12, kwe-
bapp uses ksql to open its database in split-process mode.
The split-process mode of ksql spawns a child, which
it immediately pledges to only access the database,
then waits for instructions by which to manipulate the
database.

Once the database has been opened, the calling appli-
cation, which embodies the business logic of foo, pledges
itself to have nothing but access to the socket commu-
nication of output (JSON or HTML) and the database.
This prevents compromise to our application logic from
affecting the database directly—it significantly protects
our database from internal corruption.

Once the database is open, we know the following:

1. The command parameters were parsed in a pro-
tected child environment, guaranteeing that parse
errors in our inputs will not affect the main appli-
cation.

2. Our database has been opened in a protected envi-
ronment, and cannot be directly affected by the ap-
plication process except over sockets.

3. The application can affect nothing but its own inter-
nal logic.

This protects our application’s system environment,
but it does not enact protections within. For that, we turn
to recent developments in kwebapp and ksql to enforce
role access.

In opening the database, kwebapp configure roles as
defined in its configuration and passes them into the child
process. By leaving access control entirely within a sep-
arate process, the web application process is completely
restricted from violating its role.

Roles in kwebapp are hierarchical, with child roles in-
heriting the environment of the parent. (Roles in ksql
have arbitrary topologies, keeping instead to the mathe-
matical generalities of RBAC.) Role access is mediated
for database routines (insertions, queries, updates, and
deletions) as well as data export.

Roles are reentrant toward the parent, such that reen-
trancy sheds privileges.

In Figure 6, we introduce two types of adminis-
trators: administrators for users (user management,

11https://man.openbsd.org/pledge.2
12https://kristaps.bsd.lv/kcgi

roles {

role admin {

role adminusers; # Manage users.

role adminadmins; # Delegate admins.

};

role user {

role buyer; # Buyers only.

role seller; # Sellers only.

role buyerseller; # Buyers/sellers.

};

};

Figure 6: Example role assignment for foo.

adminusers), and administrators for other administra-
tors (delegation, adminadmins). We define three types
of users: buyers (buyer), sellers (seller), and the com-
bination of buyers/sellers (buyerseller).

The administrator sub-types inherit the access of the
generic administrator (admin) class, while the user sub-
types inherit those of the user (user).

Roles can be reentrant, as is the case with most sand-
boxes, where reentrancy must retain or shed privileges,
but not augment. So a buyer may shed his or her buying
privileges to those of only a generic user.

By default, kwebapp defines three additional roles: the
all role, which is a common parent to all user-defined
roles; the default role, which is entered by default
when the system begins; and the none role, which has
no permissions.

While building our kwebapp configuration, we assign
roles on the operational level, which maps into SQL
statements. As described earlier, this functionality is not
available natively in PostgreSQL, which operates on the
level of statement types (insert, etc.).

By way of example, consider a user structure for our
application. Using kwebapp, this is rendered as an SQL
table (when in SQL output mode), a C structure and func-
tion declarations (in C header mode), and the implemen-
tation of the functions (C source mode). Several other
modes are available beyond the scope of this paper, such
as JavaScript classes.

Figure 7 begins by assigning our user a full name,
password, and unique identifier. We also stipulate two
query types (searching by credentials and by identifier)
and the possibility of creating new rows.

We limit access in Figure 7 by setting the access of
the default role, which describes the condition of our
web application upon pre-authenticated access. Com-
mon uses of default for the user table are usually log-
ging in, which requires queries for credentials, logging
out, and insertion of sessions.

The default role is our first line of defence, as the

6

https://man.openbsd.org/pledge.2
https://kristaps.bsd.lv/kcgi


struct user {

field fullname text;

field hash password;

field id int rowid;

insert;

search fullname, hash: name creds;

search id: name id;

role adminusers { all; };

role default { search creds; };

role user { search id; };

};

Figure 7: Simple role assignments for a user table.

struct user {

...

role default {

search creds;

noexport;

};

};

Figure 8: Export restrictions (snippet).

application logic is most exposed.
Following the default role, we label operations with

the adminusers and user roles as defined in Figure 6.
We can also begin with catch-all statements and later nar-
row permissions, but this is an error-prone approach—
it’s best to start with proper permissions.

In continuing to build our access restrictions, kwebapp
also allows us to build export restrictions, such as in
Figure 8. This controls the fine-grained export of data,
which is extremely useful to protect against the unautho-
rised sharing of information.

For example, while an unauthenticated user (in the
default role) should be able to query the user struc-
ture, they should never have this information exported.
The noexport per-role command accomplishes this.

With operation and export restrictions in place, we can
take full advantage of kwebapp’s current role facilities as
in Figure 9.

To guide implementation, kwebapp has an audit mode
to illustrate the data model access to any given role. The
kwebapp-audit utility allows us to view the guarantees
given between a role and its data access—the guarantees
enforced as described above, with the sandboxed split
process architecture.

We can use the JSON output mode of the audit utility
to graphically explore the application’s roles and their
access to all structures. The sample HTML and CSS files
given visualise this as a series of tables, colourised and

Role

kwebapp

ksql

SQLite

Role

kwebapp

JSON

Figure 9: Import and export check against kwebapp
roles.

annotated with direct and indirect access, as well as the
paths to access.

6 Future Work

While it’s clear that ksql should be expanded to sup-
port non-SQLite database for future work, there are some
larger architectural questions that would strengthen the
contract of noexport data.

Role

kwebapp

ksql

SQLite

Role

kwebapp

kcgi

JSON

Figure 10: Future work in output restrictions.

In the current implementation, the export routines
themselves control for the export of data.

7



However, recent improvements in kcgi allow for lock-
ing output modes, which restricts output to a predeter-
mined set of functions. The primary motivation for this
feature is to disallow rogue output within a controlled
output stream, such as injecting scripts into HTML out-
put or embedding other executable content. kwebapp can
take advantage of this to only allow certain functions to
govern output—the same functions that respect the cur-
rent role.

This can be further strengthened by having the out-
put routines execute from a restricted child process
themselves—mirroring the current design of ksql—such
as in Figure 10. This would strengthen the export restric-
tions with hard guarantees.

7 Conclusion

Despite the wealth of materials and implementations
supporting RBAC, and despite its clear applicability
to web applications, it’s surprisingly difficult to find a
readily-available end-to-end solution.

However, by exploiting these materials, and by learn-
ing from the existing implementations, we’re able to
leverage the security measures of our modern BSD sys-
tems (privilege separation, sandboxing, etc.) to establish
guarantees for our roles using kwebapp, which interfaces
with the RBAC-enabled ksql.

These tools give us considerable benefits in being able
to construct role audits to illustrate that security of our
system, as well as potential avenues of exploitation.

8 Acknowledgements

I’d like to thank the AsiaBSDCon secretary and board
for accepting this talk and funding travel and accommo-
dation for the duration of the conference. I’d also like to
thank CAPEM Solutions, Inc., for their generous support
of ksql, kwebapp, and kcgi development toward a safer,
auditable solution for security-sensitive systems.

References

[1] BARKER, S., AND DOUGLAS, P. Rbac policy
implementation for sql databases. In IFIP Ad-
vances in Information and Communication Tech-
nology, vol. 142. 01 2003, pp. 288–301.

[2] BELL, D. Looking back at the bell-la padula
model. In Proceedings - Annual Computer Security
Applications Conference, ACSAC, vol. 2005. Jan-
uary 2006.

[3] CHANDRAMOULI, R., AND SANDHU, R. Role-
based access control features in commercial
database management systems.

[4] DE RAADT, T. Mitiations and other real security
features. BSDTW 2017, 2017.

[5] DE RAADT, T. Pledge and privsep. EuroBSDCon
2017, 2017.

[6] FERRAIOLO, D., AND KUHN, R. Role-based ac-
cess control. In In 15th NIST-NCSC National Com-
puter Security Conference (1992), pp. 554–563.

[7] G. WALTER, K., OGDEN, W., M. GILLIGAN, J.,
D. SCHAEFFER, D., AND I. SCHAEN, S. Initial
structured specifications for an uncompromisable
computer security system. 194.

[8] Information technology – Database languages –
SQL. Standard, International Organization for
Standardization, Geneva, CH, 2002.

[9] LIPNER, S. B. The birth and death of the orange
book. IEEE Annals of the History of Computing 37,
2 (Apr.-June 2015), 19–31.

[10] PREZ, S., COSENTINO, V., CABOT, J., AND CUP-
PENS, F. Reverse engineering of database security
policies, 08 2013.

[11] SANDHU, R., FERRAIOLO, D., AND KUHN, D.
Nist model for role-based access control: Towards a
unified standard. In Proceedings of the ACM Work-
shop on Role-Based Access Control, vol. 2000. 01
2000, pp. 47–63.

[12] SANDHU, R. S., COYNE, E. J., FEINSTEIN,
H. L., AND YOUMAN, C. E. Role-based access
control models. 38–47.

[13] WATSON, R. Introducing supporting infrastructure
for trusted operating system support in freebsd. BS-
DCon 2000, 2000.

[14] WATSON, R., FELDMAN, B., MIGUS, A., AND
VANCE, C. Design and implementation of the
trusted bsd mac framework. In Proceedings -
DARPA Information Survivability Conference and
Exposition, DISCEX 2003, vol. 1. 05 2003, pp. 38–
49.

8


	Introduction
	History
	Related Work
	Method
	Implementation
	Future Work
	Conclusion
	Acknowledgements

