
lowdown -- simple markdown translator
lowdown is a Markdown translator producing HTML5, roff documents in the ms and man formats,

LaTeX, gemini, OpenDocument, and terminal output. The open source
<http://opensource.org/licenses/ISC> C source code has no dependencies.

The tools are documented in lowdown(1) <https://kristaps.bsd.lv/lowdown/lowdown.1.html> and

lowdown-diff(1) <https://kristaps.bsd.lv/lowdown/lowdown-diff.1.html>, the language in lowdown(5)
<https://kristaps.bsd.lv/lowdown/lowdown.5.html>, and the library interface in lowdown(3)
<https://kristaps.bsd.lv/lowdown/lowdown.3.html>.

To get and use lowdown, check if it’s available from your system’s package manager. If not,

download <https://kristaps.bsd.lv/lowdown/snapshots/lowdown.tar.gz>, verify
<https://kristaps.bsd.lv/lowdown/snapshots/lowdown.tar.gz.sha512>, and unpack the source. Then

build:

% ./configure

% make

% make regress

make install install_libs

lowdown is a BSD.lv <https://bsd.lv> project. Its portability to OpenBSD, NetBSD, FreeBSD, Mac

OS X, Linux (glibc and musl), Solaris, and IllumOS is enabled by oconfigure
<https://github.com/kristapsdz/oconfigure> and checked by BSD.lv’s build system
<https://kristaps.bsd.lv/cgi-bin/minci.cgi/index.html?project-name=lowdown>.

One major difference between lowdown and other Markdown formatters it that it internally converts to

an AST instead of directly formatting output. This enables some semantic analysis of the content such

as with the difference engine <https://kristaps.bsd.lv/lowdown/diff.html>, which shows the difference

between two markdown trees in markdown.

Output
lowdown produces HTML5 output in XML mode with -thtml, LaTeX <https://www.latex-project.org/>

documents with -tlatex, "flat" OpenDocument <https://docs.oasis-

open.org/office/OpenDocument/v1.3/os/part1-introduction/OpenDocument-v1.3-os-

part1-introduction.html> XML documentx (OpenDocument version 1.3) with -tfodt, Gemini
<https://gemini.circumlunar.space/docs/specification.html> with -tgemini, roff documents with -tms
and -tman1 outputs (via groff <https://www.gnu.org/s/groff> or mandoc <https://mdocml.bsd.lv>, or

directly on ANSI terminals with -tterm.

The -tlatex and -tms are commonly used for PDF documents, -tman for manpages, -thtml or -tgemini

lowdown -- simple markdown translator(7) Miscellaneous Information Manual

2021-09-23 lowdown -- simple markdown translator(7)

for web, and -tterm for the command line.

By way of example: this page, index.md <https://kristaps.bsd.lv/lowdown/index.md>, renders as

index.latex.pdf <https://kristaps.bsd.lv/lowdown/index.latex.pdf> with LaTeX (via -tlatex),

index.mandoc.pdf <https://kristaps.bsd.lv/lowdown/index.mandoc.pdf> with mandoc (via -tman), or

index.nroff.pdf <https://kristaps.bsd.lv/lowdown/index.nroff.pdf> with groff (via -tms).

mandoc (Image: screen-mandoc.thumb.jpg) <screen-mandoc.png> term (Image: screen-

term.thumb.jpg) <screen-term.png> groff (Image: screen-groff.thumb.jpg) <screen-groff.png>

-tman -tterm -tms

Only -thtml and -tlatex allow images and equations, though -tms has limited image support with

encapsulated postscript.

Input
Beyond traditional Markdown syntax support, lowdown supports the following Markdown features and

extensions:

+o autolinking

+o fenced code

+o tables

+o superscripts (traditional and GFM)

+o footnotes

+o disabled inline HTML

+o "smart typography"

+o metadata

+o commonmark (in progress)

+o definition lists

+o extended attributes

+o task lists

+o admonitions

Examples
Want to quickly review your Markdown in a terminal window?

lowdown -tterm README.md | less -R

I usually use lowdown when writing sblg <https://kristaps.bsd.lv/sblg> articles when I’m too lazy to

write in proper HTML5. (sblg <https://kristaps.bsd.lv/sblg> is a simple tool for knitting together blog

lowdown -- simple markdown translator(7) Miscellaneous Information Manual

2021-09-23 lowdown -- simple markdown translator(7)

articles into a blog feed.) This basically means wrapping the output of lowdown in the elements

indicating a blog article. I do this in my Makefiles:

.md.xml:

(echo "<?xml version=\"1.0\" encoding=\"UTF-8\" ?>" ; \

echo "<article data-sblg-article=\"1\">" ; \

echo "<header>" ; \

echo "<h1>" ; \

lowdown -X title $< ; \

echo "</h1>" ; \

echo "<aside>" ; \

lowdown -X htmlaside $< ; \

echo "</aside>" ; \

echo "</header>" ; \

lowdown $< ; \

echo "</article>" ;) >$@

Note: you’ll want to make sure that the title and aside are properly HTML formatted, as -X will not

escape for the output format.

If you just want a straight-up HTML5 file, use standalone mode:

lowdown -s -o README.html README.md

This can use the document’s meta-data to populate the title, CSS file, and so on.

The troff output modes work well to make PS or PDF files, although they will omit equations and only

use local PS/EPS images in -tms mode. The extra groff arguments in the following invocation are for

UTF-8 processing (-k), tables (-t), and clickable links and a table of contents (-mspdf).

If outputting PDF, use the pdfroff script instead of -Tpdf output. This allows image generation to work

properly. If not, a blank square will be output in places of your images.

lowdown -stms README.md | groff -itk -mspdf > README.ps

lowdown -stms README.md | pdfroff -itk -mspdf > README.pdf

The same can be effected with systems using mandoc <https://mdocml.bsd.lv>:

lowdown -stman README.md | mandoc -Tps > README.ps

lowdown -stman README.md | mandoc -Tpdf > README.pdf

lowdown -- simple markdown translator(7) Miscellaneous Information Manual

2021-09-23 lowdown -- simple markdown translator(7)

More support for PDF (and other print formats) is available with the -tlatex output.

lowdown -stlatex README.md | pdflatex

For terminal output, troff or mandoc may be used in their respective -Tutf8 or -Tascii modes.

Alternatively, lowdown can render directly to ANSI terminals with UTF-8 support:

lowdown -tterm README.md | less -R

Read lowdown(1) <https://kristaps.bsd.lv/lowdown/lowdown.1.html> for details on running the

system.

Library
lowdown is also available as a library, lowdown(3) <https://kristaps.bsd.lv/lowdown/lowdown.3.html>.

This is what’s used internally by lowdown(1) <https://kristaps.bsd.lv/lowdown/lowdown.1.html> and

lowdown-diff(1) <https://kristaps.bsd.lv/lowdown/lowdown-diff.1.html>.

Testing
The canonical Markdown tests are available as part of a regression framework within the system. Just

use make regress to run these and many other tests.

If you have valgrind <https://valgrind.org> installed, make valgrind will run all regression tests with all

output modes and store any leaks or bad behaviour. These are output to the screen at the conclusion of

all tests.

I’ve extensively run AFL <http://lcamtuf.coredump.cx/afl/> against the compiled sources with no

failures--definitely a credit to the hoedown <https://github.com/hoedown/hoedown> authors (and those

from whom they forked their own sources). I’ll also regularly run the system through valgrind
<http://valgrind.org/>, also without issue. The afl/in <afl/in> directory contains a series of small input

files that may be used in longer AFL runs.

Code layout
The code is neatly layed out and heavily documented internally.

First, start in library.c <https://github.com/kristapsdz/lowdown/blob/master/library.c>. (The main.c
<https://github.com/kristapsdz/lowdown/blob/master/main.c> file is just a caller to the library

interface.) Both the renderer (which renders the parsed document contents in the output format) and

the document (which generates the parse AST) are initialised.

The parse is started in document.c <https://github.com/kristapsdz/lowdown/blob/master/document.c>.

lowdown -- simple markdown translator(7) Miscellaneous Information Manual

2021-09-23 lowdown -- simple markdown translator(7)

It is preceded by meta-data parsing, if applicable, which occurs before document parsing but after the

BOM. The document is parsed into an AST (abstract syntax tree) that describes the document as a tree

of nodes, each node corresponding an input token. Once the entire tree has been generated, the AST is

passed into the front-end renderers, which construct output depth-first.

There are a variety of renderers supported: html.c
<https://github.com/kristapsdz/lowdown/blob/master/html.c> for HTML5 output, nroff.c
<https://github.com/kristapsdz/lowdown/blob/master/nroff.c> for -ms and -man output, latex.c
<https://github.com/kristapsdz/lowdown/blob/master/latex.c> for LaTeX, gemini.c
<https://github.com/kristapsdz/lowdown/blob/master/gemini.c> for Gemini, odt.c
<https://github.com/kristapsdz/lowdown/blob/master/odt.c> for OpenDocument, term.c
<https://github.com/kristapsdz/lowdown/blob/master/term.c> for terminal output, and a debugging

renderer tree.c <https://github.com/kristapsdz/lowdown/blob/master/tree.c>.

Installing
You’ll need a C compiler with essential build tools (make <https://man.openbsd.org/make>, cc
<https://man.openbsd.org/cc>, etc.). First, configure the system:

./configure

You can pass variables like PREFIX and such here. To install the binaries, run:

make install

For libraries, you can additionally run:

make install_libs

This may be split into install_shared and install_static for shared and static libraries, respectively.

Example
For example, consider the following:

Hello **world**

First, the outer block (the subsection) would begin parsing. The parser would then step into the

subcomponent: the header contents. It would then render the subcomponents in order: first the regular

text "Hello", then a bold section. The bold section would be its own subcomponent with its own

regular text child, "world".

lowdown -- simple markdown translator(7) Miscellaneous Information Manual

2021-09-23 lowdown -- simple markdown translator(7)

When run through the -Ttree output, it would generate:

LOWDOWN_ROOT

LOWDOWN_DOC_HEADER

LOWDOWN_HEADER

LOWDOWN_NORMAL_TEXT

data: 6 Bytes: Hello

LOWDOWN_DOUBLE_EMPHASIS

LOWDOWN_NORMAL_TEXT

data: 5 Bytes: world

This tree would then be passed into a front-end, such as the HTML5 front-end with -thtml. The nodes

would be appended into a buffer, which would then be passed back into the subsection parser. It would

paste the buffer into <h2> blocks (in HTML5) or a .SH block (troff outputs).

Finally, the subsection block would be fitted into whatever context it was invoked within.

Compatibility
lowdown is fully compatible with the original Markdown syntax as checked by the Markdown test

suite, last version 1.0.3. This suite is available as part of the make regress functionality.

How Can You Help?
Want to hack on lowdown? Of course you do.

+o Using a perfect hash (such as gperf) for entities.

+o There are bits and bobs remaining to be fixed or implemented. You can always just search for

TODO, XXX, or FIXME in the source code. This is your best bet.

+o Footnotes in -tms with groff extensions should use pdfmark to link to and from the definition.

+o If you want a larger project, a -tpdf seems most interesting (and quite difficult given that UTF-8

need be present). Another project that has been implemented elsewhere is a parser for mathematics

such that eqn or similar may be output.

1 You may be tempted to write manpages <https://man.openbsd.org> in Markdown, but please don’t:

use mdoc(7) <https://man.openbsd.org/mdoc>, instead -- it’s built for that purpose! The man output is

for technical documentation only (section 7).

lowdown -- simple markdown translator(7) Miscellaneous Information Manual

2021-09-23 lowdown -- simple markdown translator(7)

