
lowdown — simple markdown translator

Kristaps Dzonsons

lowdown — simple markdown translator

lowdown is a Markdown translator producing HTML5, roff documents in the ms and man formats, LaTeX,

gemini, OpenDocument, and terminal output. The open source C source code has no dependencies.

The tools are documented in lowdown(1) and lowdown-diff(1), the language in lowdown(5), and the

library interface in lowdown(3).

To get and use lowdown, check if it’s available from your system’s package manager. If not,

download, verify, and unpack the source. Then build:

% ./configure
% make
% make regress
make install install_libs

lowdown is a BSD.lv project. Its portability to OpenBSD, NetBSD, FreeBSD, Mac OS X, Linux

(glibc and musl), Solaris, and IllumOS is enabled by oconfigure and checked by BSD.lv’s build system.

One major difference between lowdown and other Markdown formatters it that it internally converts

to an AST instead of directly formatting output. This enables some semantic analysis of the content such as

with the difference engine, which shows the difference between two markdown trees in markdown.

Output

lowdown produces HTML5 output in XML mode with -thtml, LaTeX documents with -tlatex, “flat”

OpenDocument XML documentx (OpenDocument version 1.3) with -tfodt, Gemini with -tgemini, roff

documents with -tms and -tman1 outputs (via groff or mandoc, or directly on ANSI terminals with -tterm.

The -tlatex and -tms are commonly used for PDF documents, -tman for manpages, -thtml or

-tgemini for web, and -tterm for the command line.

By way of example: this page, index.md, renders as index.latex.pdf with LaTeX (via -tlatex),

index.mandoc.pdf with mandoc (via -tman), or index.nroff.pdf with groff (via -tms).

mandoc (Image: screen-mandoc.thumb.jpg) term (Image: screen-term.thumb.jpg) groff

(Image: screen-groff.thumb.jpg)

-tman -tterm -tms

Only -thtml and -tlatex allow images and equations, though -tms has limited image support with

encapsulated postscript.

Input

Beyond traditional Markdown syntax support, lowdown supports the following Markdown features and

extensions:

• autolinking

• fenced code

• tables

• superscripts (traditional and GFM)

1 You may be tempted to write manpages in Markdown, but please don’t: use mdoc(7), instead — it’s built

for that purpose! The man output is for technical documentation only (section 7).

2021-09-23

http://opensource.org/licenses/ISC
https://kristaps.bsd.lv/lowdown/lowdown.1.html
https://kristaps.bsd.lv/lowdown/lowdown-diff.1.html
https://kristaps.bsd.lv/lowdown/lowdown.5.html
https://kristaps.bsd.lv/lowdown/lowdown.3.html
https://kristaps.bsd.lv/lowdown/snapshots/lowdown.tar.gz
https://kristaps.bsd.lv/lowdown/snapshots/lowdown.tar.gz.sha512
https://bsd.lv
https://github.com/kristapsdz/oconfigure
https://kristaps.bsd.lv/cgi-bin/minci.cgi/index.html?project-name=lowdown
https://kristaps.bsd.lv/lowdown/diff.html
https://www.latex-project.org/
https://docs.oasis-open.org/office/OpenDocument/v1.3/os/part1-introduction/OpenDocument-v1.3-os-part1-introduction.html
https://gemini.circumlunar.space/docs/specification.html
https://www.gnu.org/s/groff
https://mdocml.bsd.lv
https://kristaps.bsd.lv/lowdown/index.md
https://kristaps.bsd.lv/lowdown/index.latex.pdf
https://kristaps.bsd.lv/lowdown/index.mandoc.pdf
https://kristaps.bsd.lv/lowdown/index.nroff.pdf
screen-mandoc.png
screen-term.png
screen-groff.png
screen-groff.png
https://man.openbsd.org
https://man.openbsd.org/mdoc

-2-

• footnotes

• disabled inline HTML

• “smart typography”

• metadata

• commonmark (in progress)

• definition lists

• extended attributes

• task lists

• admonitions

Examples

Want to quickly review your Markdown in a terminal window?

lowdown -tterm README.md | less -R

I usually use lowdown when writing sblg articles when I’m too lazy to write in proper HTML5. (sblg

is a simple tool for knitting together blog articles into a blog feed.) This basically means wrapping the

output of lowdown in the elements indicating a blog article. I do this in my Makefiles:

.md.xml:
(echo "<?xml version=\"1.0\" encoding=\"UTF-8\" ?>" ; \
echo "<article data-sblg-article=\"1\">" ; \
echo "<header>" ; \
echo "<h1>" ; \
lowdown -X title $< ; \
echo "</h1>" ; \
echo "<aside>" ; \
lowdown -X htmlaside $< ; \
echo "</aside>" ; \
echo "</header>" ; \
lowdown $< ; \
echo "</article>" ;) >$@

Note: you’ll want to make sure that the title and aside are properly HTML formatted, as -X will not

escape for the output format.

If you just want a straight-up HTML5 file, use standalone mode:

lowdown -s -o README.html README.md

This can use the document’s meta-data to populate the title, CSS file, and so on.

The troff output modes work well to make PS or PDF files, although they will omit equations and

only use local PS/EPS images in -tms mode. The extra groff arguments in the following invocation are for

UTF-8 processing (-k), tables (-t), and clickable links and a table of contents (-mspdf).

If outputting PDF, use the pdfroff script instead of -Tpdf output. This allows image generation to

work properly. If not, a blank square will be output in places of your images.

lowdown -stms README.md | groff -itk -mspdf > README.ps
lowdown -stms README.md | pdfroff -itk -mspdf > README.pdf

The same can be effected with systems using mandoc:

lowdown -stman README.md | mandoc -Tps > README.ps
lowdown -stman README.md | mandoc -Tpdf > README.pdf

More support for PDF (and other print formats) is available with the -tlatex output.

lowdown -stlatex README.md | pdflatex

For terminal output, troff or mandoc may be used in their respective -Tutf8 or -Tascii modes.

Alternatively, lowdown can render directly to ANSI terminals with UTF-8 support:

2021-09-23

https://kristaps.bsd.lv/sblg
https://kristaps.bsd.lv/sblg
https://mdocml.bsd.lv

-3-

lowdown -tterm README.md | less -R

Read lowdown(1) for details on running the system.

Library

lowdown is also available as a library, lowdown(3). This is what’s used internally by lowdown(1) and

lowdown-diff(1).

Testing

The canonical Markdown tests are available as part of a regression framework within the system. Just use

make regress to run these and many other tests.

If you have valgrind installed, make valgrind will run all regression tests with all output modes

and store any leaks or bad behaviour. These are output to the screen at the conclusion of all tests.

I’ve extensively run AFL against the compiled sources with no failures—definitely a credit to the

hoedown authors (and those from whom they forked their own sources). I’ll also regularly run the system

through valgrind, also without issue. The afl/in directory contains a series of small input files that may be

used in longer AFL runs.

Code layout

The code is neatly layed out and heavily documented internally.

First, start in library.c. (The main.c file is just a caller to the library interface.) Both the renderer

(which renders the parsed document contents in the output format) and the document (which generates the

parse AST) are initialised.

The parse is started in document.c. It is preceded by meta-data parsing, if applicable, which occurs

before document parsing but after the BOM. The document is parsed into an AST (abstract syntax tree)

that describes the document as a tree of nodes, each node corresponding an input token. Once the entire

tree has been generated, the AST is passed into the front-end renderers, which construct output depth-first.

There are a variety of renderers supported: html.c for HTML5 output, nroff.c for -ms and -man

output, latex.c for LaTeX, gemini.c for Gemini, odt.c for OpenDocument, term.c for terminal output, and a

debugging renderer tree.c.

Installing

You’ll need a C compiler with essential build tools (make, cc, etc.). First, configure the system:

./configure

You can pass variables like PREFIX and such here. To install the binaries, run:

make install

For libraries, you can additionally run:

make install_libs

This may be split into install_shared and install_static for shared and static libraries,

respectively.

Example

For example, consider the following:

Hello **world**

First, the outer block (the subsection) would begin parsing. The parser would then step into the

subcomponent: the header contents. It would then render the subcomponents in order: first the regular text

“Hello”, then a bold section. The bold section would be its own subcomponent with its own regular text

child, “world”.

2021-09-23

https://kristaps.bsd.lv/lowdown/lowdown.1.html
https://kristaps.bsd.lv/lowdown/lowdown.3.html
https://kristaps.bsd.lv/lowdown/lowdown.1.html
https://kristaps.bsd.lv/lowdown/lowdown-diff.1.html
https://valgrind.org
http://lcamtuf.coredump.cx/afl/
https://github.com/hoedown/hoedown
http://valgrind.org/
afl/in
https://github.com/kristapsdz/lowdown/blob/master/library.c
https://github.com/kristapsdz/lowdown/blob/master/main.c
https://github.com/kristapsdz/lowdown/blob/master/document.c
https://github.com/kristapsdz/lowdown/blob/master/html.c
https://github.com/kristapsdz/lowdown/blob/master/nroff.c
https://github.com/kristapsdz/lowdown/blob/master/latex.c
https://github.com/kristapsdz/lowdown/blob/master/gemini.c
https://github.com/kristapsdz/lowdown/blob/master/odt.c
https://github.com/kristapsdz/lowdown/blob/master/term.c
https://github.com/kristapsdz/lowdown/blob/master/tree.c
https://man.openbsd.org/make
https://man.openbsd.org/cc

-4-

When run through the -Ttree output, it would generate:

LOWDOWN_ROOT
LOWDOWN_DOC_HEADER
LOWDOWN_HEADER
LOWDOWN_NORMAL_TEXT
data: 6 Bytes: Hello

LOWDOWN_DOUBLE_EMPHASIS
LOWDOWN_NORMAL_TEXT
data: 5 Bytes: world

This tree would then be passed into a front-end, such as the HTML5 front-end with -thtml. The

nodes would be appended into a buffer, which would then be passed back into the subsection parser. It

would paste the buffer into <h2> blocks (in HTML5) or a .SH block (troff outputs).

Finally, the subsection block would be fitted into whatever context it was invoked within.

Compatibility

lowdown is fully compatible with the original Markdown syntax as checked by the Markdown test suite,

last version 1.0.3. This suite is available as part of the make regress functionality.

How Can You Help?

Want to hack on lowdown? Of course you do.

• Using a perfect hash (such as gperf) for entities.

• There are bits and bobs remaining to be fixed or implemented. You can always just search for TODO,

XXX, or FIXME in the source code. This is your best bet.

• Footnotes in -tms with groff extensions should use pdfmark to link to and from the definition.

• If you want a larger project, a -tpdf seems most interesting (and quite difficult given that UTF-8 need

be present). Another project that has been implemented elsewhere is a parser for mathematics such

that eqn or similar may be output.

2021-09-23

	lowdown simple markdown translator
	Output
	Input
	Examples
	Library
	Testing
	Code layout
	Installing
	Example
	Compatibility
	How Can You Help?

